Luminescence properties of silicon-cellulose nanocomposite
نویسندگان
چکیده
منابع مشابه
Luminescence properties of silicon-cellulose nanocomposite
We have characterized the structure and luminescence properties for two-component material composed of nanocrystalline cellulose and nanocrystalline (less to 100 nm) silicon powder. An efficient and stable photoluminescence of nanocomposite, resistant to the influence of gas-phase oxidants, has been found. The obtained material has electret-like properties and demonstrates the possibility of mu...
متن کاملCompression properties of polyvinyl alcohol--bacterial cellulose nanocomposite.
Despite the established use of total joint replacement for the treatment of advanced degeneration of articular cartilage, component loosening due to wear and osteolysis limits the lifespan of these joint prostheses. In the present study, nanocomposites consisting of poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) nanofibers were investigated as possible improved cartilage replacement mat...
متن کاملSynthesis, Characterization and Thermal Properties of Fe2TiO5/Cellulose and Cellulose Acetate Nanocomposite
Cellulose and cellulose acetate/Fe2TiO5 nanocomposites have been synthesized successfully. Nanocomposites indicate a ferromagnetic paramagneticbehavior, as evidenced by using vibrating sample magnetometer (VSM) atroom temperature. Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM) and simultaneous thermal analysis (STA) respectively, to characterize,diagnosis, mo...
متن کاملLuminescence Properties of TeO2-LiF-Gd2O3 Glasses
In this work, the structural properties and spectroscopic behavior 80 mol.%TeO2-20mol.%LiF glasses which were doped with 0. 05, 0. 2 mole% Gd2O3 have been studied. It was shown that, by increasing the amount of Gd2O3 the glass stability was decreased. The PL emissions at 431nm and 627nm wavelengths were distinguished by 320nm excitation. The FT-IR analysis showed deformed TeO4 groups in these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale Research Letters
سال: 2012
ISSN: 1556-276X
DOI: 10.1186/1556-276x-7-426